ELECTRON EXCITATION CROSS SECTIONS FOR THE C// TRANSITIONS $2s^22p'P'' \rightarrow 2s^22p'4P', 2s^2p''D', 2s', AND 2.$

Steven J. Smith¹, M. Zuo², A. Chutjian¹, S. S. Tayal³, and 1. D. Williams ⁴

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 ²Autometric Service Co., Lakewood, CO 80228 ³Department of Physics and Center for Theoretical Studies of Physical Systems Clark Atlanta University, Atlanta, GA 30314 'Dept. Pure and Applied Physics, The Queen's University, Belfast, UK BT7 1 NN

Experimental and theoretical excitation cross sections References will be reported for the $2s^22p^2P^0 \rightarrow 2s^22p 4P$, $2s2p^2D$, 2S , and 2pin C II. Use is made of electron energy-loss and merged-beams methods, The transition wavelengths (energies) are A 2324 A (5.34 eV), A 1335 A (9.29 eV), A 1036 \mathring{A} (1 1,96 eV) and \cancel{A} 904 \mathring{A} (1 3.72 eV), respectively, The energy ranges covered for the four transitions extend from below the thresholds, and are as follows:

Transition	Energy Range
2s ² 2p 2P" → 2s ² 2p 'p	4.0 -25 eV
2s ² 2P 2P" → 2s2p ² 'D	9.4 - 22.4 eV
2s²2p *P" → 2s2p² *S	9.5 - 22 eV
2s ² 2p 2P" → 2s2p ² P	15.3 -24.2 eV

As in previous work with O II [1], care was taken to assess and minimize the metastable fraction in the C // beam, Inelastically -back-scattered electrons were collected, and dead-time corrections carefully assessed. For some earlier results, a forward/backward correction was used to account for loss of signal scattered in the 900-180° (laboratory) direction. This correction was determined directly from later measurements performed with a modified detection system capable of measuring separately the forward and backward components. The correction was additionally compared with present 11 -state R-Matrix calculations of the forward/back scattering ratio.

Comparisons are made between the present experimental results and other measurements [2-3]; as well as with present 11 -state R-Matrix calculations and published 10-state **R-Matrix** calculations [4] for each transition,

MZ thanks the National Academy of Sciences-National Research Council for support at JPL. The theory and supercomputing time was supported by the DoE, Basic Energy Sciences. The experimental work was carried out at JPL/Caltech, and supported by NASA.

- [1] M. Zuo, S. J. Smith, A. Chutjian, 1. D. Williams, S. S. Taval, and B.M. McLaughlin. Ap. J. 444, 0000 (1995) (in press).
- [2] G.P.Lafyatis and J.L. Kohl, Phys. Rev. A 36,59 (1987).

[31 1. D. Williams, et al, unpublished.

[4] D.Luo and A.K. Pradhan, Phys. Rev A 47, 165 (1990).